Format

Send to

Choose Destination
Eur J Neurosci. 2002 Feb;15(4):651-60.

In vivo activation and nuclear translocation of phosphorylated glycogen synthase kinase-3beta in neuronal apoptosis: links to tau phosphorylation.

Author information

1
Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR.

Abstract

The roles of glycogen synthase kinase-3beta (GSK-3beta) and tau phosphorylation were examined in seven-day-old rats injected with the NMDA receptor antagonist (MK801) that is known to induce neuronal apoptosis. Immunoblot and immunohistochemical analysis of brain samples demonstrated a site-specific increase in tau phosphorylation associated with the relocalization of the protein to the nuclear/perinuclear region of apoptotic neurons. In addition, a tau 32-kDa fragment was detected, suggesting that tau was a target of intracellular proteolysis in MK801-treated brains. The proteolytically modified form of tau has reduced ability to bind to microtubules. GSK-3beta kinase assay and immunoblottings of active (tyrosine-216) and inactive (serine-9) forms of GSK-3beta revealed a rapid and transient increase in the kinase activity. Lithium chloride, a GSK-3beta inhibitor, prevented tau phosphorylation suggesting that tau phosphorylation is mediated by the activation of GSK-3beta. Confocal microscopy using double labelling of tau and GSK-3beta revealed that the activation of GSK-3beta in neurons was associated with early (2 h) nuclear translocation of tyrosine-216 GSK-3beta. The execution phase of neuronal apoptosis was accompanied by a selective phosphorylation of serine-9 and dephosphorylation of tyrosine-216 GSK-3beta. These findings demonstrate that in vivo, GSK-3beta kinase activation and nuclear translocation are early stress signals of neuronal apoptosis.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center