Format

Send to

Choose Destination
J Biol Chem. 2002 May 31;277(22):19358-66. Epub 2002 Mar 7.

Oncogenic H-Ras enhances DNA repair through the Ras/phosphatidylinositol 3-kinase/Rac1 pathway in NIH3T3 cells. Evidence for association with reactive oxygen species.

Author information

1
Department of Pharmacology, School of Medicine, the Research Center for Proteineous Materials, Chosun University, 375 Seosuk-dong, Kwangju 501-759, Korea. hjyou@mail.chosun.ac.kr

Abstract

This study investigated the role of oncogenic H-Ras in DNA repair capacity in NIH3T3 cells. Expression of dominant-positive H-Ras (V12-H-Ras) enhanced the host cell reactivation of luciferase activity from UV-irradiated and cisplatin-treated plasmids and also increased the unscheduled DNA synthesis following cisplatin or UV treatment of cells. This observed enhancement of DNA repair capacity was inhibited by transient transfection with dominant-negative H-Ras (N17-H-Ras) or Rac1 (N17-Rac1) plasmids. Moreover, stable transfection of dominant-positive Rac1 (V12-Rac1) further enhanced DNA repair capacity. Because reactive oxygen species (ROS) are known to be a downstream effector of oncogenic Ras, we examined the role of ROS in DNA repair capacity. We found that ROS production by V12-H-Ras expression was mediated by the Ras/phosphatidylinositol 3-kinase (PI3K)/Rac1/NADPH oxidase-dependent pathway and that pretreatment of V12-H-Ras-transformed cells with an antioxidant (N-acetylcysteine) and an NADPH oxidase inhibitor (diphenyleneiodonium) decreased DNA repair capacity. Similarly, treatment with PI3K inhibitors (wortmannin and LY294002) inhibited the ability of oncogenic H-Ras to enhance DNA repair capacity. Furthermore, inhibition of the Ras/PI3K/Rac1/NADPH oxidase pathway resulted in increased sensitivity to cisplatin and UV in V12-H-Ras-expressing NIH3T3 cells. Taken together, these results provide evidence that oncogenic H-Ras activates DNA repair capacity through the Ras/PI3K/Rac1/NADPH oxidase-dependent pathway and that increased ROS production via this signaling pathway is required for enhancement of the DNA repair capacity induced by oncogenic H-Ras.

PMID:
11884408
DOI:
10.1074/jbc.M200933200
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center