Format

Send to

Choose Destination
Biochem Biophys Res Commun. 2002 Mar 15;291(5):1113-8.

Beta-1,4-galactosyltransferase and lactose synthase: molecular mechanical devices.

Author information

1
Structural Glycobiology Section, National Cancer Institute/NIH, Building 469, Frederick, MD 21702, USA.

Abstract

Recent structural investigations on the beta-1,4-galactosyltransferase-1 (Gal-T1) and lactose synthase (LS) have revealed that they are akin to an exquisite mechanical device with two well-coordinated flexible loops that are contained within the Gal-T1 catalytic domain. The smaller one has a Trp residue (Trp314) flanked by glycine residues. The larger one comprises amino acid residues 345 to 365. Upon substrate binding, the Trp314 side chain moves to lock the sugar nucleotide in the binding site, while the large loop undergoes a conformational change, masking the sugar nucleotide binding site, and creates (i) the oligosaccharide binding cavity; (ii) a protein-protein interacting site for the enzyme's partner, alpha-lactalbumin (LA); and (iii) a metal ion binding site. Only in conformation II do Gal-T1 and LA form the LS complex, enabling Gal-T1 to choose the new substrate glucose. LA holds and puts Glc right in the acceptor binding site of Gal-T1, which then maximizes the interactions with Glc, thereby making it a preferred acceptor for the LS reaction. The interaction of LA with Gal-T1 in conformation II also stabilizes the sugar-nucleotide-enzyme complex, kinetically enhancing the sugar transfer, even from the less preferred sugar nucleotides. The conformational change that masks the sugar nucleotide binding site can also be induced by the acceptor alone, thus making it possible for the protein to act as a specific lectin.

PMID:
11883930
DOI:
10.1006/bbrc.2002.6506
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center