Format

Send to

Choose Destination
See comment in PubMed Commons below
Virology. 2001 Dec 20;291(2):226-34.

Sequences and replication of genomes of the archaeal rudiviruses SIRV1 and SIRV2: relationships to the archaeal lipothrixvirus SIFV and some eukaryal viruses.

Author information

1
Microbial Genome Centre, Institute of Molecular Biology, Copenhagen University, Sølvgade 83H, DK-1307 Copenhagen K, Denmark.

Abstract

The double-stranded DNA genomes of the viruses SIRV1 and SIRV2, which infect the extremely thermophilic archaeon Sulfolobus and belong to the family Rudiviridae, were sequenced. They are linear, covalently closed at the ends, and 32,312 and 35,502 bp long, respectively, with an A+T content of 75%. The genomes of SIRV1 and SIRV2 carry inverted terminal repeats of 2029 and 1628 bp, respectively, which contain multiple direct repeats. SIRV1 and SIRV2 genomes contain 45 and 54 ORFs, respectively, of which 44 are homologous to one another. Their predicted functions include a DNA polymerase, a Holliday junction resolvase, and a dUTPase. The genomes consist of blocks with well-conserved sequences separated by nonconserved sequences. Recombination, gene duplication, horizontal gene transfer, and substitution of viral genes by homologous host genes have contributed to their evolution. The finding of head-to-head and tail-to-tail linked replicative intermediates suggests that the linear genomes replicate by the same mechanism as the similarly organized linear genomes of the eukaryal poxviruses, African swine fever virus and Chlorella viruses. SIRV1 and SIRV2 both contain motifs that resemble the binding sites for Holliday junction resolvases of eukaryal viruses and may use common mechanisms for resolution of replicative intermediates. The results suggest a common origin of the replication machineries of the archaeal rudiviruses and the above-mentioned eukaryal viruses. About 1/3 of the ORFs of each rudivirus have homologs in the Sulfolobus virus SIFV of the family Lipothrixviridae, indicating that the two viral families form a superfamily. The finding of inverted repeats of at least 0.8 kb at the termini of the linear genome of SIFV supports this inference.

PMID:
11878892
DOI:
10.1006/viro.2001.1190
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center