Format

Send to

Choose Destination
See comment in PubMed Commons below
Biophys J. 2002 Mar;82(3):1570-9.

Entrapment and condensation of DNA in neutral reverse micelles.

Author information

1
Waisman Center, Department of Pediatrics and Medical Genetics, Medical School, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA. budker@facstaff.wisc.edu

Abstract

DNA condensation and compaction is induced by a variety of condensing agents such as polycations. The present study analyzed the structure of plasmid DNA (DNA) in the small inner space of reverse micelles formed from nonionic surfactants (isotropic phase). Spectroscopic studies indicated that DNA was dissolved in an organic solvent in the presence of a neutral detergent. Fluorescent quenching of ethidium bromide and of rhodamine covalently attached to DNA suggested that the DNA within neutral, reverse micelles was condensed. Circular dichroism indicated that the DNA structure was C form (member of B family) and not the dehydrated A form. Concordantly, NMR experiments indicated that the reverse micelles contained a pool of free water, even at a ratio of water to surfactant (Wo) of 3.75. Electron microscopic analysis also indicated that the DNA was in a ring-like structure, probably toroids. Atomic force microscopic images also revealed small, compact particles after the condensed DNA structures were preserved using an innovative cross-linking strategy. In the lamellar phase, the DNA was configured in long strands that were 20 nm in diameter. Interestingly, such DNA structures, reminiscent of "nanowires," have apparently not been previously observed.

PMID:
11867469
PMCID:
PMC1301955
DOI:
10.1016/S0006-3495(02)75508-2
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center