Send to

Choose Destination
Nat Neurosci. 2002 Mar;5(3):210-7.

Differential modulation of Ca(v)2.1 channels by calmodulin and Ca2+-binding protein 1.

Author information

Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7280, USA.


Ca(v)2.1 channels, which mediate P/Q-type Ca2+ currents, undergo Ca2+/calmodulin (CaM)-dependent inactivation and facilitation that can significantly alter synaptic efficacy. Here we report that the neuronal Ca2+-binding protein 1 (CaBP1) modulates Ca(v)2.1 channels in a manner that is markedly different from modulation by CaM. CaBP1 enhances inactivation, causes a depolarizing shift in the voltage dependence of activation, and does not support Ca2+-dependent facilitation of Ca(v)2.1 channels. These inhibitory effects of CaBP1 do not require Ca2+, but depend on the CaM-binding domain in the alpha1 subunit of Ca(v)2.1 channels (alpha12.1). CaBP1 binds to the CaM-binding domain, co-immunoprecipitates with alpha12.1 from transfected cells and brain extracts, and colocalizes with alpha12.1 in discrete microdomains of neurons in the hippocampus and cerebellum. Our results identify an interaction between Ca2+ channels and CaBP1 that may regulate Ca2+-dependent forms of synaptic plasticity by inhibiting Ca2+ influx into neurons.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center