Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2002 Feb 21;415(6874):883-7.

Ultra-broadband semiconductor laser.

Author information

  • 1Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA.


The fundamental mechanism behind laser action leads in general only to narrowband, single-wavelength emission. Several approaches for achieving spectrally broadband laser action have been put forward, such as enhancing the optical feedback in the wings of the gain spectrum, multi-peaked gain spectra, and the most favoured technique at present, ultrashort pulse excitation. Each of these approaches has drawbacks, such as a complex external laser cavity configuration, a non-flat optical gain envelope function, or an inability to operate in continuous mode, respectively. Here we present a monolithic, mid-infrared 'supercontinuum' semiconductor laser that has none of these drawbacks. We adopt a quantum cascade configuration, where a number of dissimilar intersubband optical transitions are made to cooperate in order to provide broadband optical gain from 5 to 8 microm wavelength. Laser action with a Fabry-PĂ©rot spectrum covering all wavelengths from 6 to 8 microm simultaneously is demonstrated with this approach. Lasers that emit light over such an extremely wide wavelength range are of interest for applications as varied as terabit optical data communications or ultra-precision metrology and spectroscopy.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center