Format

Send to

Choose Destination
Vaccine. 2002 Feb 22;20(11-12):1670-4.

Supplementation of conventional trivalent influenza vaccine with purified viral N1 and N2 neuraminidases induces a balanced immune response without antigenic competition.

Author information

1
Department of Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA. bertjoh@pol.net

Abstract

Influenza viruses neuraminidase (NA) were chromatographically extracted from influenza viruses A/Nanchang/933/95 H3(NC)N2(NC) [R] and A/Johannesburg/82/96 H1(JH)N1(JH) [R] and used to supplement conventional inactivated trivalent influenza vaccine. Immunization of mice with this preparation resulted in high titers of antibodies to both hemagglutinins (HA) and neuraminidases (NA); there were no significant differences in the anti-HA antibody titers between the conventional and the supplemented vaccine preparation. Likewise, there were no significant differences in anti-NA antibody titers between the supplemented vaccine and titers from mice immunized with a neuraminidase vaccine containing a mixture of N1-NA and N2-NA. There was no evidence of a diminution of the immune response to the HA components of the vaccine despite the presence of antigenically equivalent amounts of both N1-NA and N2-NAs. Homotypic and distantly related heterotypic infections for both H1, N1 and H3N2 subtypes were suppressed and greater reduction in pulmonary virus titers (PVT) were observed in the trivalent vaccine supplemented with purified neuraminidase from each subtype, N1 and N2. Effects on the influenza B viral components were not studied. Previous studies on supplementation of conventional influenza vaccine focused only on monovalent H3N2 vaccine preparations; this study demonstrates in a mouse model system that supplementation of trivalent influenza vaccine with both influenza A subtype neuraminidases, N1 and N2 is highly immunogenic for HA and NA of each subtype and efficacious in protecting against influenza from homotypic and heterotypic infectious challenges of either subtype.

PMID:
11858877
DOI:
10.1016/s0264-410x(01)00490-x
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center