Format

Send to

Choose Destination
J Exp Zool. 2002 Feb 15;292(3):231-40.

Cold acclimation induces proliferation of sarcoplasmic reticulum without increase in Ca2+-ATPase activity in white axial muscle of striped bass (Morone saxatilis).

Author information

1
Pathology Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.

Abstract

The effects of acclimation of striped bass to cold (5 degrees C) and warm (25 degrees C) temperatures upon ultrastructural features of white axial skeletal muscle are quantified. Surface density of sarcoplasmic reticulum (SR) increased by almost 30%, and SR volume density increased by about 20% during cold acclimation. Proliferation of SR suggests an increase in available SR surface for re-sequestration of Ca2+ and a decrease in diffusion path length for Ca2+ during cold acclimation. Average cross-sectional areas and cross-sectional perimeters of myofibrils situated in the center of muscle fibers decreased during cold acclimation by approximately 20% and 11%, respectively. Additionally, average major and minor axes of ellipses fit to central myofibrillar cross-sections decreased by approximately 12% and 8%, respectively, during cold acclimation. These measurements define a decrease in average myofibrillar diameter and suggest a decrease in diffusion path length for Ca2+ to and from myofibrillar activation sites. Measurements of peripheral myofibrils that had elongated profiles in cross-sections indicate that maximum profile length of these myofibrils decreases by about 17%. Peripheral myofibrils may break up into smaller myofibrils with more rounded cross-sectional profiles during cold acclimation. SR Ca2+-ATPase of white axial muscle was also measured in unfractionated homogenates and in crude SR-enriched subcellular fractions from cold- and warm-acclimated striped bass. No difference in SR Ca2+-ATPase activity per g wet weight was observed between cold- and warm-acclimated animals. Lack of increase in SR Ca2+-ATPase per g wet weight, despite a significant proliferation of SR, probably results in a decrease in average Ca2+-ATPase pump density within the SR membrane during cold acclimation. Thus, compensation for decreased diffusion coefficient of Ca2+ during cold acclimation appears due to the combined effects of proliferation of SR surface density and a decrease in average myofibrillar diameter.

PMID:
11857457
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center