Send to

Choose Destination
Oncogene. 2002 Feb 21;21(9):1346-58.

Identification of genes regulated by dexamethasone in multiple myeloma cells using oligonucleotide arrays.

Author information

The Jerome Lipper Multiple Myeloma Center, Department of Adult Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, MA 02115, USA.


Our previous studies have characterized Dexamethasone (Dex)-induced apoptotic signaling pathways in multiple myeloma (MM) cells; however, related transcriptional events are not fully defined. In the present study, gene expression profiles of Dex-treated MM cells were determined using oligonucleotide arrays. Dex triggers early transient induction of many genes involved in cell defense/repair-machinery. This is followed by induction of genes known to mediate cell death and repression of growth/survival-related genes. The molecular and genetic alterations associated with Dex resistance in MM cells are also unknown. We compared the gene expression profiles of Dex-sensitive and Dex-resistant MM cells and identified a number of genes which may confer Dex-resistance. Finally, gene profiling of freshly isolated MM patient cells validates our in vitro MM cell line data, confirming an in vivo relevance of these studies. Collectively, these findings provide insights into the basic mechanisms of Dex activity against MM, as well as mechanisms of Dex-resistance in MM cells. These studies may therefore allow improved therapeutic uses of Dex, based upon targeting genes that regulate MM cell growth and survival.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center