Format

Send to

Choose Destination
J Biol Chem. 2002 May 31;277(22):19823-30. Epub 2002 Feb 20.

Aspartic acid residues 72 and 75 and tyrosine-sulfate 73 of heparin cofactor II promote intramolecular interactions during glycosaminoglycan binding and thrombin inhibition.

Author information

1
Department of Pathology, Center for Thrombosis and Hemostasis, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599-7035, USA.

Abstract

We used site-directed mutagenesis to investigate the role of Glu(69), Asp(70), Asp(71), Asp(72), Tyr-sulfate(73), and Asp(75) in the second acidic region (AR2) of the serpin heparin cofactor II (HCII) during formation of the thrombin.HCII complex with and without glycosaminoglycans. E69Q/D70N/D71N recombinant (r)HCII, D72N/Y73F/D75N rHCII, and E69Q/D70N/D71N/D72N/Y73F/D75N rHCII were prepared to localize acidic residues important for thrombin inhibition. Interestingly, D72N/Y73F/D75N rHCII had significantly enhanced thrombin inhibition without glycosaminoglycan (4-fold greater) and with heparin (6-fold greater), showing maximal activity at 2 microg/ml heparin compared with wild-type recombinant HCII (wt-rHCII) with maximal activity at 20 microg/ml heparin. The other rHCII mutants had lesser-enhanced activities, but they all eluted from heparin-Sepharose at significantly higher ionic strengths compared with wt-rHCII. Neutralizing and reversing the charge of Asp(72), Tyr-sulfate(73), and Asp(75) were done to characterize their individual contribution to HCII activity. Only Y73K rHCII and D75K rHCII have significantly increased heparin cofactor activity compared with wt-rHCII; however, all of the individual rHCII mutants required substantially less glycosaminoglycan at maximal inhibition than did wt-rHCII. Inhibition of either alpha-thrombin/hirugen or gamma(T)-thrombin (both with an altered anion-binding exosite-1) by the AR2 rHCII mutants was similar to wt-rHCII. D72N/Y73F/D75N rHCII and D75K rHCII were significantly more active than wt-rHCII in a plasma-based thrombin inhibition assay with glycosaminoglycans. These results indicate that improved thrombin inhibition in the AR2 HCII mutants is mediated by enhanced interactions between the acidic domain and anion-binding exosite-1 of thrombin and that AR2 may be a "molecular rheostat" to promote thrombin inhibition in the presence of glycosaminoglycans.

PMID:
11856753
DOI:
10.1074/jbc.M200630200
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center