Send to

Choose Destination
See comment in PubMed Commons below
Brain Res Dev Brain Res. 2002 Jan 31;133(1):57-67.

Opposing changes of trimeric G protein levels during ontogenetic development of rat brain.

Author information

Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic.


Developmental changes in the distribution of guanine nucleotide-binding regulatory proteins (G proteins) were investigated in the rat brain during postnatal development. Using a standard or high-resolution urea-SDS-PAGE and specific polyclonal antipeptide antibodies oriented against G(i)alpha1/G(i)alpha2, G(i)alpha3, G(s)alpha, G(o)alpha1/G(o)alpha2, G(q)alpha/G(11)alpha and Gbeta subunit, all these proteins were determined by quantitative immunoblotting in homogenates prepared from cortex, thalamus, hippocampus and pituitary of 1-, 7-, 12-, 18-, 25- and 90-day-old animals. The levels of the majority of G protein alpha subunits, namely G(i)alpha1, G(i)alpha2, G(i)alpha3, G(o)alpha1, G(o)alpha2, G(q)alpha, G(11)alpha and Gbeta, were high already at birth. Whereas the short variant of G(s)alpha, G(s)alphaS, rose sharply in all tested brain regions between postnatal day (PD) 1 and 90, the long variant of G(s)alpha, G(s)alphaL, was unchanged in cortex and thalamus and slightly increased in hippocampus. An increase was observed also in expression of G(i)alpha1/G(i)alpha2 and G(o)alpha1 protein, while G(o)alpha2 remained constant. Minority protein G(o)alpha* dramatically increased in cortex and thalamus, was unchanged in hippocampus and not detectable in pituitary. By contrast, the highest levels of G(i)alpha3 and G(q)alpha/G(11)alpha were detected as early as at PD 1. During the next 90 days, the immunological signal of G(i)alpha3 almost disappeared and G(q)alpha/G(11)alpha continuously declined to the levels corresponding to 50% of the levels determined at birth. Expression of Gbeta subunit was basically unchanged during postnatal development. Our present analysis indicates that G(s)alpha, G(i)alpha/G(o)alpha and G(q)alpha/G(11)alpha proteins are differently expressed in the course of brain development. Differential expression of the individual alpha subunits of trimeric G proteins during postnatal development suggests their different roles in maturation of the brain tissue.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center