Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant J. 2002 Feb;29(3):371-80.

High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene.

Author information

1
Pioneer Hi-Bred International, Inc., 7300 NW 62nd Avenue, Johnston, Iowa, USA.

Abstract

As an approach to understand the regulation of methionine (Met) metabolism, Arabidopsis Met over-accumulating mutants were isolated based on their resistance to selection by ethionine. One mutant, mto3, accumulated remarkably high levels of free Met - more than 200-fold that observed for wild type - yet showed little or no difference in the concentrations of other protein amino-acids, such as aspartate, threonine and lysine. Mutant plants did not show any visible growth differences compared with wild type, except a slight delay in germination. Genetic analysis indicated that the mto3 phenotype was caused by a single, recessive mutation. Positional cloning of this gene revealed that it was a novel S-adenosylmethionine synthetase, SAMS3. A point mutation resulting in a single amino-acid change in the ATP binding domain of SAMS3 was determined to be responsible for the mto3 phenotype. SAMS3 gene expression and total SAMS protein were not changed in mto3; however, both total SAMS activity and S-adenosylmethionine (SAM) concentration were decreased in mto3 compared with wild type. Lignin, a major metabolic sink for SAM, was decreased by 22% in mto3 compared with wild type, presumably due to the reduced supply of SAM. These results suggest that SAMS3 has a different function(s) in one carbon metabolism relative to the other members of the SAMS gene family.

PMID:
11844113
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center