Send to

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 1979 Dec 20;7(8):2213-38.

Sequence and secondary structure of Drosophila melanogaster 5.8S and 2S rRNAs and of the processing site between them.


Drosophila melanogaster 5.8S and 2S rRNAs were end-labeled with 32p at either the 5' or 3' end and were sequenced. 5.8S rRNA is 123 nucleotides long and homologous to the 5' part of sequenced 5.8S molecules from other species. 2S rRNA is 30 nucleotides long and homologous to the 3' part of other 5.8S molecules. The 3' end of the 5.8S molecule is able to base-pair with the 5' end of the 2S rRNA to generate a helical region equivalent in position to the "GC-rich hairpin" found in all previously sequenced 5.8S molecules. Probing the structure of the labeled Drosophila 5.8S molecule with S1 nuclease in solution verifies its similarity to other 5.8S rRNAs. The 2S rRNA is shown to form a stable complex with both 5.8S and 26S rRNAs separately and together. 5.8S rRNA can also form either binary or ternary complexes with 2S and 26S rRNA. It is concluded that the 5.8S rRNA in Drosophila melanogaster is very similar both in sequence and structure to other 5.8 rRNAs but is split into two pieces, the 2S rRNA being the 3' part. 2S anchors the 5.8S and 26S rRNA. The order of the rRNA coding regions in the ribosomal DNA repeating unit is shown to be 18S - 5.8S - 2S - 26S. Direct sequencing of ribosomal DNA shows that the 5.8S and 2S regions are separated by a 28 nucleotide spacer which is A-T rich and is presumably removed by a specific processing event. A secondary structure model is proposed for the 26S-5.8S ternary complex and for the presumptive precursor molecule.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center