Send to

Choose Destination
See comment in PubMed Commons below
Dent Traumatol. 2002 Feb;18(1):24-7.

EVA mouthguards: how thick should they be?

Author information

Department of Mathematics, The University of Queensland, Brisbane, Australia.


A major consideration in the performance of mouthguards is their ability to absorb energy and reduce transmitted forces when impacted. This is especially important to participants in contact sports such as hockey or football. The thickness of mouthguard materials is directly related to energy absorption and inversely related to transmitted forces when impacted. However, wearer comfort is also an important factor in their use. Thicker mouthguards are not user-friendly. While thickness of material over incisal edges and cusps of teeth is critical, just how thick should a mouthguard be and especially in these two areas? Transmitted forces through different thicknesses of the most commonly used mouthguard material, ethylene vinyl acetate (EVA) (Shore A Hardness of 80) were compared when impacted with identical forces which were capable of damaging the oro-facial complex. The constant impact force used in the tests was produced by a pendulum and had an energy of 4.4 joules and a velocity of 3 meters per second. Improvements in energy absorption and reductions in transmitted forces were observed with increasing thickness. However, these improvements lessened when the mouthguard material thickness was greater than 4 mm. The results show that the optimal thickness for EVA mouthguard material with a Shore A Hardness of 80 is around 4 mm. Increased thickness, while improving performance marginally, results in less wearer comfort and acceptance.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center