Format

Send to

Choose Destination
Biochemistry. 2002 Feb 19;41(7):2106-14.

Duplicated dockerin subdomains of Clostridium thermocellum endoglucanase CelD bind to a cohesin domain of the scaffolding protein CipA with distinct thermodynamic parameters and a negative cooperativity.

Author information

1
Unité de Biochimie Structurale, URA 2185, Département d'Immunologie, and Unité Microbiologie et Environnement, URA 2172, CNRS, Institut Pasteur, 28, rue du Dr. Roux, 75724 Paris Cedex 15, France.

Abstract

Mutagenized dockerin domains of endoglucanase CelD (type I) and of the cellulosome-integrating protein CipA (type II) were constructed by swapping residues 10 and 11 of the first or the second duplicated segment between the two polypeptides. These residues have been proposed to determine the specificity of cohesin-dockerin interactions. The dockerin domain of CelD still bound to the seventh cohesin domain of CipA (CohCip7), provided that mutagenesis occurred in one segment only. Binding was no longer detected by nondenaturing gel electrophoresis when both segments were mutagenized. The dockerin domain of CipA bound to the cohesin domain of SdbA as long as the second segment was intact. None of the mutated dockerins displayed detectable binding to the noncognate cohesin domain. Isothermal titration calorimetry showed that binding of the CelD dockerin to CohCip7 occurred with a high affinity [K(a) = (2.6 +/- 0.5) x 10(9) M(-1)] and a 1:1 stoichiometry. The reaction was weakly exothermic (DeltaHdegrees = -2.22 +/- 0.2 kcal x mol(-1)) and largely entropy driven (TDeltaSdegrees = 10.70 +/- 0.5 kcal x mol(-1)). The heat capacity change on complexation was negative (DeltaC(p) = -305 +/- 15 cal x mol(-1) x K(-1)). These values show that cohesin-dockerin binding is mainly hydrophobic. Mutations in the first or the second dockerin segment reduced or enhanced, respectively, the hydrophobic character of the interaction. Due to partial enthalpy-entropy compensation, these mutations induced only small changes in binding affinity. However, the binding affinity was strongly decreased when both segments were mutated, indicating strong negative cooperativity between the two mutated sites.

PMID:
11841200
DOI:
10.1021/bi011853m
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center