Format

Send to

Choose Destination
Neurology. 2002 Feb 12;58(3):438-45.

Three lipoprotein receptors and cholesterol in inclusion-body myositis muscle.

Author information

1
USC Neuromuscular Center, Department of Neurology, University of Southern California Keck School of Medicine, Good Samaritan Hospital, 637 S. Lucas Ave., Los Angeles, CA 90017-1912, USA.

Abstract

BACKGROUND:

An important aspect of inclusion-body myositis (IBM) vacuolated muscle fibers (VMF) is abnormal accumulation of amyloid-beta precursor protein (AbetaPP) epitopes and its product, amyloid-beta (Abeta), and of phosphorylated tau (p-tau) in the form of paired helical filaments. Lipoprotein receptors and cholesterol are known to play an important role in AbetaPP processing, Abeta production, and tau phosphorylation.

METHODS:

In 10 IBM and 22 control muscle biopsies the authors immunolocalized low-density lipoprotein receptor (LDLR), very low-density lipoprotein receptor (VLDLR), and low-density lipoprotein receptor-related protein (LRP), and colocalized them with Abeta, p-tau, APOE, and free cholesterol.

RESULTS:

In each biopsy, virtually all IBM VMF had strong LDLR-immunoreactive inclusions, which colocalized with Abeta, APOE, p-tau, and free cholesterol. VLDLR was increased mainly diffusely, but in approximately 50% of the VMF it was also accumulated in the form of inclusions colocalizing with Abeta, APOE, and free cholesterol, but not with p-tau. LRP inclusions were present in a few VMF. In all myopathies, a subset of regenerating and necrotizing muscle fibers had prominent diffuse accumulation of both LDLR and free cholesterol. At normal neuromuscular junctions (NMJ) postsynaptically, LDLR and VLDLR, but not LRP, were immunoreactive.

CONCLUSIONS:

1) Abnormal accumulation of LDLR, VLDLR, LRP, and cholesterol within IBM vacuolated muscle fibers suggests novel roles for them in the IBM pathogenesis. 2) Expression of LDLR and VLDLR at normal NMJ suggests physiologic roles for them in transsynaptic signaling pathways, increased internalization of lipoproteins there, or both. 3) Increased LDLR and free cholesterol in some regenerating and necrotizing muscle fibers suggest a role for them in human muscle fiber growth and repair and necrotic death.

PMID:
11839845
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center