Send to

Choose Destination
See comment in PubMed Commons below
Am J Pathol. 2002 Feb;160(2):613-20.

Hepatocyte growth factor and c-Met inhibition by hepatic cell hypoxia: a potential mechanism for liver regeneration failure in experimental cirrhosis.

Author information

  • 1Service d'Hépatologie, INSERM Unité 402, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, 184 rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France.


Hepatic resection in cirrhotic patients is associated with impaired liver regeneration and poor clinical outcome. Because experimental cirrhosis is associated with hepatic cell hypoxia, we herein investigated whether hypoxia might alter the mechanisms of liver regeneration in the cirrhotic liver. Cirrhosis was induced by diethylnitrosamine in rats. Immunohistochemistry was performed to assess hepatocellular hypoxia and proliferation 24 hours after a two-thirds partial hepatectomy (PH) in cirrhotic and control rats. Cultured hepatocytes and myofibroblastic hepatic stellate cells were submitted to hypoxia using anaerobic jars. Hepatocyte growth factor (HGF) and c-Met expressions were determined by reverse transcriptase-polymerase chain reaction, Northern blot, and Western blot. In control rats, hypoxia was restricted to perivenular hepatocytes, and PH induced a marked increase in hepatocyte proliferation and in liver HGF expression, whereas c-Met expression remained unchanged. In cirrhotic rats, hypoxia was detected virtually in all of the hepatocytes, and PH induced no significant change in hepatocyte proliferation and in liver HGF expression, whereas c-Met expression was decreased as compared to normal livers. In vitro, the expression of HGF in myofibroblastic hepatic stellate cells and of c-Met in hepatocytes underwent a dramatic decrease under hypoxia. Our results suggest that hepatocellular hypoxia causes inhibition of HGF (and of c-Met)-mediated proliferation and thereby might contribute to liver regeneration failure in cirrhotic liver.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center