Format

Send to

Choose Destination
Microbiology. 2002 Feb;148(Pt 2):391-404.

Streptomyces spp. contain class Ia and class II ribonucleotide reductases: expression analysis of the genes in vegetative growth.

Author information

1
Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel.

Abstract

Genes encoding two ribonucleotide reductases (RNRs) were identified in members of the genus Streptomyces. One gene, nrdJ, encoded an oligomeric protein comprising four identical subunits each with a molecular mass of approximately 108 kDa. The activity of this protein depended on the presence of 5'-deoxyadenosylcobalamine (coenzyme B12), establishing it as a class II RNR. The Streptomyces clavuligerus nrdJ gene was cloned, using internal peptide sequences from the purified protein, and was found to encode a polypeptide of 961 aa. Molecular phylogenetic analysis showed that the S. clavuligerus class II RNR shares significant similarity with most other bacterial and archaeal class II RNRs. Two other genes, nrdA and nrdB, were initially identified in the Streptomyces coelicolor genome database in unannotated ORFs as encoding a class Ia RNR. Southern analysis demonstrated that the nrdAB genes were present in different Streptomyces spp. The S. coelicolor nrdAB genes were cloned and expressed in Escherichia coli, and the recombinant proteins were shown to represent a class I RNR. It was shown, using quantitative real-time PCR, that the S. clavuligerus class Ia and class II RNR genes were differentially transcribed during vegetative growth. The copy number of the class II nrdJ transcripts was approximately constant throughout the exponential phase of vegetative growth (3-5x10(5) copies per 400 ng total RNA after reverse transcription). In contrast, the copy number of the class Ia nrdAB transcripts was some 10- to 20-fold less than that of nrdJ in the early-exponential growth phase (2.8x10(4) copies), and decreased markedly at the mid-exponential (4x10(3) copies) and late-exponential phases (1.1x10(3) copies) of growth. A possible role for the involvement of two RNRs during vegetative growth is discussed.

PMID:
11832503
DOI:
10.1099/00221287-148-2-391
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Ingenta plc
Loading ...
Support Center