Send to

Choose Destination
See comment in PubMed Commons below
Pharmacol Biochem Behav. 2002 Mar;71(3):457-68.

Local circuit regulation of paraventricular nucleus stress integration: glutamate-GABA connections.

Author information

Department of Psychiatry, University of Cincinnati, 231 Albert Sabin Avenue, Cincinnati, OH 45267-0559, USA.


Limbic neurocircuits play a central role in regulation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Limbic influences on adrenocortical hormone secretion are mediated by transynaptic activation or inhibition of hypophysiotrophic neurons in the medial parvocellular paraventricular nucleus (PVN). Projections from the ventral subiculum, prefrontal cortex, medial amygdala, lateral septum, paraventricular thalamus and suprachiasmatic nucleus (SN) terminate in the immediate surround of the PVN, an area heavily populated by GABAergic interneurons. As such, these regions are positioned to modulate paraventricular output via excitation or inhibition of interneuronal projections into the PVN. In addition, the same limbic and diencephalic regions have projections to local PVN-projecting hypothalamic and basal telencephalic nuclei, including the dorsomedial and medial preoptic nuclei and the bed nucleus of the stria terminalis. These regions are involved in both inhibitory and excitatory regulation of the stress axis, indicating that they contain heterogeneous neuronal populations whose relative impact on the PVN is determined by the nature of afferent stimuli. Thus, limbic modulation of the pituitary-adrenocortical system appears to be a multisynaptic process integrated at the level of local PVN-projecting neurocircuits. Local circuits are likely the primary integrators of anticipatory stress responses, and may indeed be the focus of HPA dysfunction seen with aging or affective disease.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center