Send to

Choose Destination
Vis Neurosci. 2001 Jul-Aug;18(4):663-73.

Membrane current of retinal rods of Caudiverbera caudiverbera (Amphibia: Leptodactylidae): dark noise, spectral and absolute light sensitivity.

Author information

Department of Physiology, Faculty of Sciences, and Valparaíso Molecular and Cellular Center for Neuroscience, University of Valparaíso, Chile.


We investigated the photocurrents from isolated rods of the South American anuran, Caudiverbera caudiverbera. Rod outer segments were on average 66.4 +/- 11.2 microm (mean +/- S.D., n = 104) in length and 6.6 +/- 0.9 microm (mean +/- S.D.) in diameter: 40 +/- 22 photoisomerizations (mean +/- S.D., range 10-99, n = 16) were required for eliciting a half-saturating photocurrent response. The time-to-peak was 911 +/- 217 ms (mean +/- S.D., n = 14, 20 degrees C) in the linear range of the response and the integration time of the current response was 1744 +/- 451 ms (mean +/- S.D., n = 14). The time-to-peak appears to be slower and the integration time shorter in Caudiverbera than in Ambystoma tigrinum, Rana pipiens or Xenopus laevis rods under similar experimental conditions. The a-band of rod spectral sensitivity has a lambda(max) at 520 +/- 2.1 nm (mean +/- S.D., range 516-525 nm, n = 24) and the bandwidth fits a porphyropsin visual pigment. The single-event response amplitude ranges from 0.31-0.51 pA, depending on the calculation method. The intrinsic dark current (variance at dark minus variance under bright light) was 0.045 +/- 0.040 pA2 (mean +/- S.D., n = 24). Our results support the presence of a dark-noise component below 1 Hz, with kinetics similar to the single-photon evoked response and a rate of 0.006 events s(-1) (n = 9).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Cambridge University Press
Loading ...
Support Center