Send to

Choose Destination
Eur J Immunol. 2002 Feb;32(2):585-94.

Blockade of CTLA-4 enhances allergic sensitization and eosinophilic airway inflammation in genetically predisposed mice.

Author information

Laboratory of Experimental Immunology, University Hospitals, Faculty of Medicine, U.Z. Gasthuisberg, University of Leuven, Herestraat 49, B-3000 Leuven, Belgium.


CTLA-4 (CD152) expression is restricted to subsets of activated T lymphocytes and shares homology with CD28. CTLA-4 and CD28 molecules both bind to B7 molecules on antigen-presenting cells. Whereas CD28-B7 interaction enhances T cell activation, cytokine production and survival, CTLA-4 signaling down-regulates T cell responses. Here, we studied the involvement of CTLA-4 triggering in the pathogenesis of allergen-induced airway inflammation in mice. Anti-CTLA-4 mAb were injected during i.p. sensitization with ovalbumin (OVA). This treatment favored OVA-specific IgE production and augmented blood eosinophilia in BALB/c mice. In BALB/c mice, enhanced Th2 sensitization after anti-CTLA-4 mAb injections resulted in more severe airway inflammation, and increased airway hyperresponsiveness to metacholine, bronchial eosinophilia and IL-4 and IL-5 levels in broncho-alveolar lavage (BAL) fluid following repeated allergen inhalations. Importantly, aggravation of airway inflammation and enhancement of Th2 responses were accompanied by a significant reduction of pulmonary TGF-beta levels at protein level in BAL fluid as well as on mRNA level in inflamed lung tissue. In contrast to BALB/c mice, blockade of CTLA-4 did not alter IgE production nor the phenotype of airway inflammation or TGF-beta production in C57BL/6 mice. Our data suggest that CTLA-4 triggering represents an important regulatory mechanism for Th2 sensitization in genetically predisposed mice by modulating TGF-beta production.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center