Format

Send to

Choose Destination
See comment in PubMed Commons below
Brain Res Bull. 2002 Jan 1;57(1):73-83.

Corticosteroid receptors in the brain: gene targeting studies.

Author information

  • 1Center for Neurobiology and Behavior, Columbia University, New York, NY 10032, USA. ck@fido.cpmc.columbia.edu

Abstract

Corticosteroids are released by the adrenal cortex with a diurnal rhythm and in response to stressful environmental changes. They not only act on peripheral organs, but also regulate brain physiology, thereby affecting mental processes like emotion and cognition. Here, we discuss the role of the two known corticosteroid receptors--glucocorticoid receptor (GR) and mineralocorticoid receptor (MR)--in the brain by summarizing the results obtained with various genetically modified mouse lines. In these lines, either the GR or the MR gene has been targeted or GR protein levels have been upregulated or downregulated. Analysis of the different lines confirms the importance of GR in the regulation of the hypothalamic pituitary adrenal (HPA) axis because interference with GR activity activates the HPA axis, whereas increased GR protein levels inhibit HPA axis activity. Genetic downregulation of GR protein levels and inactivation of the GR gene in the brain reduce anxiety-related behavior, which reveals a central role of GR in emotional behavior. Both HPA axis activity and anxiety are modulated by corticotropin releasing hormone (CRH); therefore, we include in the discussion results obtained with genetically modified CRH or CRH receptor mice. We further address the important role of corticosteroid receptors for hippocampal function and integrity. Cellular properties of CA1 neurons are changed, and hippocampal-dependent explicit memory is affected in GR mutant animals. Comparing MR and GR mutant animals suggests the requirement of MR but not GR for dentate gyrus granule cell maintenance. Because an imbalance in glucocorticoid levels is associated with cognitive impairments and mental disorders, the described mouse lines will aid in understanding the mechanisms involved in the pathology of these disorders.

PMID:
11827739
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center