Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Apr 19;277(16):13717-23. Epub 2002 Feb 1.

Assembly limits the pharmacological complexity of ATP-sensitive potassium channels.

Author information

Centre for Clinical Pharmacology, Department of Medicine, University College London, The Rayne Institute, London WC1E 6JJ, United Kingdom.


ATP-sensitive potassium channels (K(ATP) channels) are formed from an octameric complex of an inwardly rectifying K(+) channel (Kir6.1, Kir6.2) and a sulfonylurea receptor (SUR1, SUR2A, and SUR2B). In this study we have attempted to address the question of whether SUR heteromultimers can form using a combination of biochemical and electrophysiological approaches. We have constructed monoclonal stable lines in HEK293 cells co-expressing Kir6.2 with SUR1 and SUR2A. Using coimmunoprecipitation analysis with SUR isotype-specific antibodies two biochemical populations are distinguished, one containing SUR1 and the other SUR2A. It is not possible to detect immune complexes containing both SUR1 and SUR2A. Functional studies were undertaken and whole cell membrane currents were studied using the patch clamp. Concentrations of sulfonylureas and potassium channel openers were determined that selectively inhibited or activated SUR1/Kir6.2 and SUR2A/Kir6.2. In the cell line expressing SUR1/SUR2AKir6.2 we were unable to demonstrate a population of channels with unique pharmacological properties. Thus we conclude from these studies that heteromultimeric channel complexes containing both SUR1 and SUR2A are not formed, suggesting an incompatibility between different SUR subtypes. This incompatibility limits the pharmacological complexity of K(ATP) channels that may be observed in native tissues.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center