Format

Send to

Choose Destination
Inorg Chem. 2002 Feb 11;41(3):566-70.

Synthesis, excited-state dynamics, and reactivity of a directly-linked pyromellitimide-(porphinato)zinc(II) complex.

Author information

1
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.

Abstract

N-[5-(10,20-Diphenylporphinato)zinc(II)]-N'-(octyl)pyromellitic diimide (PZn-PI), a meso-pyromellitimide-substituted (porphinato)zinc(II) compound, has been fabricated from the reaction of (5-amino-10,20-diphenylporphinato)zinc(II) with pyromellitic dianhydride in the presence of octylamine. Interrogation of the photoinduced charge separation (CS) and thermal charge recombination (CR) electron-transfer (ET) dynamics for PZn-PI in CH(2)Cl(2) via pump-probe transient absorption spectroscopic methods shows that tau(CS) and tau(CR) are 770 and 5200 fs, respectively. These ET dynamics differ from those elucidated previously for closely related 5-quinonyl-substituted (porphinato)metal compounds, and derive from the fact that the low-lying excited states for PZn-PI are porphyrin-localized, possessing little charge-transfer character. The synthesis of N-(5-[15-(2-(triisopropylsilyl)ethynyl)-10,20-diphenylporphinato]zinc(II))-N'-(octyl)pyromellitic diimide demonstrates that PZn-PI can be halogenated at its 15-meso-position and used subsequently as a substrate in metal-catalyzed cross-coupling reactions; the reactivity of PZn-PI is unusual with respect to many directly linked donor-acceptor compounds in that it is stable to these oxidizing and reducing reaction conditions.

PMID:
11825084
DOI:
10.1021/ic0108641

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center