Send to

Choose Destination
See comment in PubMed Commons below
J Exp Biol. 2002 Jan;205(Pt 1):1-12.

Behavioral recovery from spinal cord injury following delayed application of polyethylene glycol.

Author information

Center for Paralysis Research, Institute for Applied Neurology, Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907-1244, USA.


Topical application of the hydrophilic polymer polyethylene glycol (PEG) to isolated adult guinea pig spinal cord injuries has been shown to lead to the recovery of both the anatomical integrity of the tissue and the conduction of nerve impulses through the lesion. Furthermore, a brief (2 min) application of the fusogen (M(r) 1800, 50 % w/v aqueous solution) to the exposed spinal cord injury in vivo can also cause rapid recovery of nerve impulse conduction through the lesion in association with functional recovery. Behavioral recovery was demonstrated using a long-tract, spinal-cord-dependent behavior in rodents known as the cutaneus trunci muscle (CTM) reflex. This reflex is observed as a contraction of the skin of the back in response to tactile stimulation. Here, we confirm and extend these preliminary observations. A severe compression/contusion injury to the exposed thoracic spinal cord of the guinea pig was performed between thoracic vertebrae 10 and 11. Approximately 7 h later, a topical application of PEG was made to the injury (dura removed) for 2 min in 15 experimental animals, and levels of recovery were compared with those of 13 vehicle-treated control animals. In PEG-treated animals, 93 % recovered variable levels of CTM functioning and all recovered some level of conduction through the lesion, as measured by evoked potential techniques. The recovered reflex was relatively normal compared with the quantitative characteristics of the reflex prior to injury with respect to the direction, distance and velocity of skin contraction. Only 23 % of the control population showed any spontaneous CTM recovery (P=0.0003) and none recovered conduction through the lesion during the 1 month period of observation (P=0.0001). These results suggest that repair of nerve membranes by polymeric sealing can provide a novel means for the rapid restoration of function following spinal cord injury.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center