Myxococcus xanthus mutants with temperature-sensitive, stage-specific defects: evidence for independent pathways in development

J Bacteriol. 1979 Dec;140(3):1036-42. doi: 10.1128/jb.140.3.1036-1042.1979.

Abstract

Fruiting-body formation in the bacterium Myxococcus xanthus consists of a temporal sequence of cellular aggregation and sporulation. To examine the developmental stages more closely, we established synchronous and reproducible conditions for fruiting-body formation. Mutants that are temperature sensitive for fruiting-body formation were isolated and analyzed under these conditions. The terminal morphologies of the mutant strains at the nonpermissive temperature were found to resemble intermediate stages of fruiting-body formation and therefore were grouped in the following phenotypic classes: (i) rough mutants, which show no aggregation; (ii) swirl mutants, which show defective aggregation; (iii) flat-mound mutants and translucent-mound mutants, mutants which aggregate but show very low levels of sporulation. The mutants were characterized by temperature-shift experiments and found to exhibit discrete and reproducible temperature-sensitive periods. The ends of the temperature-sensitive periods in the various mutants covered a broad range of the developmental cycle. No correlation was found between the terminal morphologies at the restrictive temperature and the timing of the temperature-sensitive periods. However, the terminal morphologies correlated well with sporulation. The rough and swirl mutants produced normal numbers of myxospores at 34 degrees C even though they failed to aggregate. In contrast, the flat-mound and translucent-mound mutants, which aggregate normally, produced very few spores. The translucent-mound mutants were also temperature sensitive for induction of glycerol spores. The results indicate that both aggregation and sporulation are initiated early in the developmental cycle and that these processes are largely independent of each other.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Glycerol / pharmacology
  • Mutation*
  • Myxococcales / cytology
  • Myxococcales / genetics*
  • Myxococcales / growth & development
  • Spores, Bacterial
  • Temperature

Substances

  • Glycerol