Format

Send to

Choose Destination
See comment in PubMed Commons below
Arch Biochem Biophys. 2002 Jan 15;397(2):149-55.

Ribonucleotide reductases: the evolution of allosteric regulation.

Author information

1
Department of Biochemistry, Medical Nobel Institute, Stockholm, 17177, Sweden. peter.reichard@mbb.ki.se

Abstract

Ribonucleotide reductases catalyze in all living organisms the production of the deoxyribonucleotides required for DNA replication and repair. Their appearance during evolution was a prerequisite for the transition from the "RNA world," where RNA sufficed for both catalysis and information transfer, to today's situation where life depends on the interplay among DNA, RNA, and protein. Three classes of ribonucleotide reductases exist today, widely differing in their primary and quaternary structures but all with a highly similar allosteric regulation of their substrate specificity. Here, I discuss the diversities between the three classes, describe their allosteric regulation, and discuss the evidence for their evolution. The appearance of oxygen on earth provided the likely driving force for enzyme diversification. From today's characteristics of the three classes, including their allosteric regulation, I propose that the anaerobic class III reductases with their iron-sulfur cluster and the requirement for S-adenosylmethionine for the generation of a glycyl protein free radical are the closest relatives to an ancestor ribonucleotide reductase.

PMID:
11795865
DOI:
10.1006/abbi.2001.2637
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center