Format

Send to

Choose Destination
J Biomed Mater Res. 2002;63(1):15-23.

Interlaboratory validation of oxidation-index measurement methods for UHMWPE after long-term shelf aging.

Author information

1
Exponent, Inc., Philadelphia, Pennsylvania 19103, USA. skurtz@exponent.com

Abstract

An international oxidation index standard would greatly benefit the orthopedic community by providing a universal scale for reporting oxidation data of ultra-high molecular weight polyethylene (UHMWPE). We investigated whether severe oxidation associated with long-term shelf aging affects the repeatability and reproducibility of area-based oxidation index measurement techniques based on normalization with the use of 1370- or 2022-cm(-1) infrared (IR) absorption reference peaks. Because an oxidation index is expected to be independent of sample thickness, subsurface oxidation was examined with the use of both 100- and 200-microm-thick sections from tibial components (compression-molded GUR 1120, gamma irradiated in air) that were shelf aged for up to 11.5 years. Eight institutions in the United States and Europe participated in the present study, which was administered in accordance with ASTM E691. On average, the 100-microm-thick samples were associated with significantly greater interlaboratory relative standard uncertainty (40.3%) when compared with the 200-microm samples (21.8%, p = 0.002). In contrast, the intralaboratory relative standard uncertainty was not significantly affected by the sample thickness (p = 0.21). The oxidation index method did not significantly influence either the interlaboratory or intralaboratory relative standard uncertainty (p = 0.32 or 0.75, respectively). Our interlaboratory data suggest that with the suitable choice of specimen thickness (e.g., 200 microm) and either of the two optimal oxidation index methods, interlaboratory reproducibility of the most heavily oxidized regions in long-term shelf-aged components can be quantified with a relative standard uncertainty of 21% or less. Therefore, both the 1370-cm(-1) and the 2022-cm(-1) reference peaks appear equally suitable for use in defining a standard method for calculating an oxidation index for UHMWPE.

PMID:
11787024
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center