Format

Send to

Choose Destination
See comment in PubMed Commons below
Dev Biol. 2002 Jan 1;241(1):47-58.

The Caenorhabditis elegans par-5 gene encodes a 14-3-3 protein required for cellular asymmetry in the early embryo.

Author information

1
Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.

Abstract

The establishment of anterior-posterior polarity in the Caenorhabditis elegans embryo requires the activity of the maternally expressed par genes. We report the identification and analysis of a new par gene, par-5. We show that par-5 is required for asynchrony and asymmetry in the first embryonic cell divisions, normal pseudocleavage, normal cleavage spindle orientation at the two-cell stage, and localization of P granules and MEX-5 during the first and subsequent cell cycles. Furthermore, par-5 activity is required in the first cell cycle for the asymmetric cortical localization of PAR-1 and PAR-2 to the posterior, and PAR-3, PAR-6, and PKC-3 to the anterior. When PAR-5 is reduced by mutation or by RNA interference, these proteins spread around the cortex of the one-cell embryo and partially overlap. We have shown by sequence analysis of par-5 mutants and by RNA interference that the par-5 gene is the same as the ftt-1 gene, and encodes a 14-3-3 protein. The PAR-5 14-3-3 protein is present in gonads, oocytes, and early embryos, but is not asymmetrically distributed. Our analysis indicates that the par-5 14-3-3 gene plays a crucial role in the early events leading to polarization of the C. elegans zygote.

PMID:
11784094
DOI:
10.1006/dbio.2001.0489
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center