Format

Send to

Choose Destination
Dev Biol. 2001 Nov 1;239(1):107-17.

Induction of ascidian peripheral neuron by vegetal blastomeres.

Author information

1
Molecular Neurobiology Group, Neuroscience Research Institute, AIST, Tsukuba Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan. y-ootsuka@aist.go.jp

Abstract

Ascidian tadpole larvae have a similar dorsal tubular nervous system as vertebrates. The induction of brain formation from a4.2-derived (a-line) cells requires signals from the A4.1-derived (A-line) cells. However, little is known about the mechanism underlying the development of the larval peripheral nervous system due to the lack of a suitable molecular marker. Gelsolin, an actin-binding protein, is specifically expressed in epidermal sensory neurons (ESNs) that mainly constitute the entire peripheral nervous system of the ascidian young tadpoles. Here, we address the role of cell interactions in the specification of ESNs using immunostaining with an anti-gelsolin antibody. Animal half (a4.2- and b4.2-derived) embryos did not give rise to any gelsolin-positive neurons, indicating that differentiation of ESNs requires signals from vegetal cells. Cell isolation experiments showed that A4.1 blastomeres induce gelsolin-positive neurons from a-line cells but not from b4.2-derived (b-line) cells. On the other hand, B4.1 blastomeres induce gelsolin-positive neurons both from b-line cells and a-line cells. This is in sharp contrast to the specification of brain cells which is not affected by the ablation of B4.1-derived (B-line) cells. Furthermore, basic fibroblast growth factor (bFGF) induced ESNs from the a-line cells and b-line cells in the absence of vegetal cells. Their competence to form ESNs was lost between the 110-cell stage and the neurula stage. Our results suggested that the specification of the a-line cells and b-line cells into ESNs is controlled by distinct inducing signals from the anterior and posterior vegetal blastomeres. ESNs in the trunk appear to be derived from the a8.26 blastomeres aligning on the edge of presumptive neural region where ascidian homologue of Pax3 is expressed. These findings highlight the close similarity of ascidian ESNs development with that of vertebrate placode and neural crest.

PMID:
11784022
DOI:
10.1006/dbio.2001.0425
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center