Send to

Choose Destination
See comment in PubMed Commons below
Toxicol Appl Pharmacol. 2002 Jan 1;178(1):15-21.

Dioxin increases reactive oxygen production in mouse liver mitochondria.

Author information

Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0056, USA.


Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD) causes an oxidative stress response in liver and several extrahepatic tissues. The subcellular sources and underlying mechanisms of dioxin-induced reactive oxygen, however, are not well understood. In this study, we examined whether mitochondria, organelles that consume the majority of cellular oxygen, might be a source of dioxin-induced reactive oxygen. Female C57BL/6 mice were treated with dioxin (15 microg/kg body wt ip) on 3 consecutive days, and liver mitochondria were examined at 1, 4, and 8 weeks after the first treatment. Mitochondrial aconitase activity, an enzyme inactivated by superoxide, was decreased by 44% at 1 week, 22% at 4 weeks, and returned to control levels at 8 weeks. Dioxin elevated succinate-stimulated mitochondrial H2O2 production twofold at 1 and 4 weeks; H2O2 production remained significantly elevated at 8 weeks. The enhanced H2O2 production was due to neither increased Mn-superoxide dismutase activity nor decreased mitochondrial glutathione peroxidase activity. Dioxin treatment augmented mitochondrial glutathione, but not glutathione disulfide levels, a result that might be explained by increased mitochondrial glutathione reductase activity. Liver ATP levels were significantly lowered at 1 and 4 weeks, the peak times of mitochondrial reactive oxygen production. Increased dioxin-stimulated reactive oxygen at 1 and 4 weeks did not appear to be related to the observed decrease in cytochrome oxidase activity, since State 3 and State 4 respiration were not diminished. To our knowledge, this is the first report to show that dioxin increases mitochondrial respiration-dependent reactive oxygen production, which may play an important role in dioxin-induced toxicity and disease.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center