Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell. 2001 Dec;8(6):1303-12.

Structural basis of Smad1 activation by receptor kinase phosphorylation.

Author information

1
Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA.

Abstract

Phosphorylation of Smad1 at the conserved carboxyl terminal SVS sequence activates BMP signaling. Here we report the crystal structure of the Smad1 MH2 domain in a conformation that reveals the structural effects of phosphorylation and a molecular mechanism for activation. Within a trimeric subunit assembly, the SVS sequence docks near two putative phosphoserine binding pockets of the neighboring molecule, in a position ready to interact upon phosphorylation. The MH2 domain undergoes concerted conformational changes upon activation, which signal Smad1 dissociation from the receptor kinase for subsequent heteromeric assembly with Smad4. Biochemical and modeling studies reveal unique favorable interactions within the Smad1/Smad4 heteromeric interface, providing a structural basis for their association in signaling.

PMID:
11779505
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center