Format

Send to

Choose Destination
See comment in PubMed Commons below
J Virol. 2002 Feb;76(3):1124-34.

Inhibition of interferons by ectromelia virus.

Author information

  • 1Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.

Abstract

Ectromelia virus (EV) is an orthopoxvirus (OPV) that causes mousepox, a severe disease of laboratory mice. Mousepox is a useful model of OPV infection because EV is likely to be a natural mouse pathogen, unlike its close relatives vaccinia virus (VV) and variola virus. Several studies have highlighted the importance of mouse interferons (IFNs) in resistance to and recovery from EV infection, but little is known of the anti-IFN strategies encoded by the virus itself. We have determined that 12 distinct strains and isolates of EV encode soluble, secreted receptors for IFN-gamma (vIFN-gammaR) and IFN-alpha/beta (vIFN-alpha/betaR) that are homologous to those identified in other OPVs. We demonstrate for the first time that the EV vIFN-gammaR has the unique ability to inhibit the biological activity of mouse IFN-gamma. The EV vIFN-alpha/betaR was a potent inhibitor of human and mouse IFN-alpha and human IFN-beta but, surprisingly, was unable to inhibit mouse IFN-beta. The replication of all of the EVs included in our study and of cowpox virus was more resistant than VV to the antiviral effects induced in mouse L-929 cells by IFN-alpha/beta and IFN-gamma. Sequencing studies showed that this EV resistance is likely to be partly mediated by the double-stranded-RNA-binding protein encoded by an intact EV homolog of the VV E3L gene. The absence of a functional K3L gene, which encodes a viral eIF-2alpha homolog, in EV suggests that the virus encodes a novel mechanism to counteract the IFN response. These findings will facilitate future studies of the role of viral anti-IFN strategies in mousepox pathogenesis. Their significance in the light of earlier data on the role of IFNs in mousepox is discussed.

PMID:
11773388
PMCID:
PMC135801
[PubMed - indexed for MEDLINE]
Free PMC Article

Publication Types, MeSH Terms, Substances, Secondary Source ID

Publication Types

MeSH Terms

Substances

Secondary Source ID

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center