Format

Send to

Choose Destination
J Physiol. 2002 Jan 1;538(Pt 1):25-39.

Voltage and concentration dependence of Ca(2+) permeability in recombinant glutamate receptor subtypes.

Author information

1
Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794-5230, USA.

Abstract

The channels associated with glutamate receptor (GluR) subtypes, namely N-methyl-D-aspartate receptors (NMDARs), and Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) and kainate receptors (KARs), are to varying degrees permeable to Ca(2+). To compare the mechanism of Ca(2+) influx, we measured Ca(2+) permeability relative to that of Na(+) (P(Ca)/P(Na)) using fractional Ca(2+) currents (P(f)) and reversal potential measurements over a wide voltage and Ca(2+) concentration range in recombinant NMDAR NR1-NR2A, AMPAR GluR-A(Q) and KAR GluR-6(Q) channels. For NR1-NR2A channels, P(Ca)/P(Na) derived from P(f) measurements was voltage independent but showed a weak concentration dependence. A stronger concentration dependence was found when P(Ca)/P(Na) was derived from changes in reversal potentials on going from a Na(+) reference solution to a solution with Ca(2+) as the only permeant ion ('biionic' condition). In contrast, P(Ca)/P(Na) was concentration independent when derived from changes in reversal potentials on going from a Na(+) reference solution to the same solution with added Ca(2+) ('high monovalent' condition). For GluR-A(Q) channels, P(Ca)/P(Na) derived from all three approaches was concentration independent, and for the reversal potential-based approaches were of comparable magnitude. Their most distinctive property was that P(Ca)/P(Na) derived from P(f) measurements was strongly voltage dependent. For GluR-6(Q) channels, P(Ca)/P(Na) derived from P(f) measurements was weakly voltage dependent. On the other hand, P(Ca)/P(Na) derived from all three approaches was the most strongly concentration dependent of any GluR subtype and, except for low Ca(2+) concentrations, the values were of comparable magnitude. Thus, the three Ca(2+)-permeable GluR subtypes showed unique patterns of Ca(2+) permeability, indicating that distinct biophysical and molecular events underlie Ca(2+) influx in each subtype.

PMID:
11773314
PMCID:
PMC2290011
DOI:
10.1113/jphysiol.2001.012897
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center