Format

Send to

Choose Destination
Drug Resist Updat. 2001 Jun;4(3):169-77.

Anthracycline drug targeting: cytoplasmic versus nuclear--a fork in the road.

Author information

1
Department of Pharmacology, The University of Tennessee Health Science Center, Memphis 38163, USA. llothstein@utmem.edu

Abstract

The anthracycline antibiotics doxorubicin (Adriamycin; DOX) and daunorubicin (DNR) continue to be essential components of first-line chemotherapy in the treatment of a variety of solid and hematopoietic tumors. The overall efficacies of DOX and DNR are, however, impeded by serious dose-limiting toxicities, including cardiotoxicity, and the selection of multiple mechanisms of cellular drug resistance. These limitations have necessitated the development of newer anthracyclines whose structural and functional modifications circumvent these impediments. In this review, we will present recent strategies in anthracycline design and assess their potential therapeutic merits. Current anthracycline design has diverged to target either cytoplasmic or nuclear sites. Nuclear targets have been broadened to include not only topoisomerase II (topo II) inhibition through ternary complex stabilization and catalytic inhibition, but also topoisomerase I (topo I) inhibition and transcriptional inhibition. In contrast, cytoplasmic targeting focuses on anthracycline binding to protein kinase C (PKC) regulatory domain with consequent modulation of activity.

PMID:
11768330
DOI:
10.1054/drup.2001.0201
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center