Send to

Choose Destination
Res Microbiol. 2001 Nov;152(9):811-22.

Mercury resistance transposons of gram-negative environmental bacteria and their classification.

Author information

Institute of Molecular Genetics, Russian Academy of Sciences, Moscow.


A total of 29 mercury resistance transposons were isolated from mercury-resistant environmental strains of proteobacteria collected in different parts of Eurasia and the USA and tested for hybridization with probes specific for transposase genes of known mercury resistance transposons. 9 were related to Tn21 in this test, 12 were related to Tn5053, 4 to Tn5041 and 1 to Tn5044; three transposons were negative in this test. Restriction mapping and DNA sequencing revealed that 12 transposons were identical or nearly identical to their corresponding relatives while the rest showed varying divergence from their closest relatives. Most of these previously unknown transposons apparently arose as a result of homologous or site-specific recombination. One of these, Tn5046, was completely sequenced, and shown to be a chimera with the mer operon and the transposition module derived from the transposons related to Tn5041 and to Tn5044, respectively. Transposon Tn5070, showing no hybridization with the specific probes used in this study, was also completely sequenced. The transposition module of Tn5070 was most closely related to that of Tn3 while the mer operon was most closely related to that of plasmid pMERPH. The merR of Tn5070 is transcribed in the same direction as the mer structural genes, which is typical for mer operons of gram-positive bacteria. Our data suggest that environmental bacteria may harbor many not yet recognized mercury resistance transposons and warrant their further inventory.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center