Format

Send to

Choose Destination
See comment in PubMed Commons below
EMBO Rep. 2002 Jan;3(1):63-8. Epub 2001 Dec 19.

Wnt signals are transmitted through N-terminally dephosphorylated beta-catenin.

Author information

1
Department of Immunology, Erasmus University Rotterdam/University Hospital Rotterdam, The Netherlands.

Abstract

beta-catenin mediates Wnt signaling by acting as the essential co-activator for TCF transcription factors. Wnt signaling increases the half-life and therefore the absolute level of beta-catenin in responding cells. The current model states that these changes in beta-catenin stability set the threshold for Wnt signaling. However, we find that pharmacological inhibition of proteasome activity by ALLN leads to accumulation of cytosolic beta-catenin but not to increased TCF-mediated transcription. In addition, in temperature-sensitive ubiquitylation mutant CHO cells inhibition of ubiquitylation increases beta-catenin levels, but does not induce transcriptional activation of TCF reporter genes. Using an antibody specific for beta-catenin dephosphorylated at residues Ser37 and Thr41, we show that Wnt signals specifically increase the levels of dephosphorylated beta-catenin, whereas ALLN does not. We conclude that changes in the phosphorylation status of the N-terminus of beta-catenin that occur upon Wnt signaling independently affect the signaling properties and half-life of beta-catenin. Hence, Wnt signals are transduced via N-terminally dephosphorylated beta-catenin.

PMID:
11751573
PMCID:
PMC1083921
DOI:
10.1093/embo-reports/kvf002
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center