Format

Send to

Choose Destination
See comment in PubMed Commons below

ATP-sensitive K(+) channels composed of Kir6.1 and SUR2B subunits in guinea pig gastric myocytes.

Author information

  • 1Department of Physiology and Biophysics, Seoul National University College of Medicine, Seoul 110-799, Korea.

Abstract

This study was designed to identify the single-channel properties and molecular entity of ATP-sensitive K(+) (K(ATP)) channels in guinea pig gastric myocytes with patch-clamp recording and RT-PCR. Pinacidil and diazoxide activated K(ATP) currents in a glibenclamide-sensitive manner. The open probability of channels was enhanced by the application of 10 microM pinacidil from 0.085 +/- 0.04 to 0.20 +/- 0.05 (n = 7) and was completely blocked by 10 microM glibenclamide. Single-channel conductance was 37.3 +/- 2.5 pS (n = 4) between -80 and -20 mV in symmetrical K(+) gradient conditions. In inside-out mode, K(ATP) channels showed no spontaneous openings and were activated by the application of nucleotide diphosphates to the cytoplasmic side. These single-channel properties are similar to those of the nucleotide diphosphate-dependent K(+) channels in vascular smooth muscle, which are composed of Kir6.1 and sulfonylurea receptor (SUR)2B. RT-PCR demonstrated the presence of Kir6.1, Kir6.2, and SUR2B in guinea pig stomach smooth muscle cells. These results suggest that K(ATP) channels in smooth muscle cells of the guinea pig stomach are composed of Kir6.1 and SUR2B.

PMID:
11751167
DOI:
10.1152/ajpgi.00057.2002
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center