Send to

Choose Destination
Biochim Biophys Acta. 2001 Nov 30;1534(1):1-13.

Sesamin, a sesame lignan, decreases fatty acid synthesis in rat liver accompanying the down-regulation of sterol regulatory element binding protein-1.

Author information

Laboratory of Nutrition Biochemistry, National Food Research Institute, tsukuba City, Japan.


The effect of sesamin, one of the most abundant lignans in sesame seed, on hepatic fatty acid synthesis was examined in rats. Rats were fed experimental diets containing varying amounts (0, 0.1 and 0.2% for Exp. 1 and 0, 0.2 and 0.4% for Exp. 2, respectively) of sesamin for 15 days. The activity and gene expression of enzymes involved in fatty acid synthesis including acetyl-CoA carboxylase, fatty acid synthase, ATP-citrate lyase and glucose-6-phosphate dehydrogenase decreased as the dietary level of sesamin increased in Exp. 1 and in rats fed the 0.2% sesamin diet they were approximately one-half those in animals fed a sesamin-free diet. In Exp. 2, the 0.2% sesamin diet lowered these parameters to one-half the level for a sesamin-free diet, but no further reduction was seen in animals fed the 0.4% sesamin diet. Dietary sesamin dose-dependently decreased the sterol regulatory element binding protein-1 (SREBP-1) mRNA level, and the value in rats fed a 0.4% sesamin diet was approximately one-half that in those fed a sesamin-free diet. The protein content of the membrane-bound precursor form of SREBP-1 decreased as dietary sesamin increased and was 37% lower in rats fed the 0.4% sesamin diet than in those fed a sesamin-free diet. Dietary sesamin exerted a more marked influence on the protein content of the mature nuclear form of SREBP-1. Diets containing 0.2 and 0.4% sesamin lowered the amount of mature SREBP-1 protein to less than one-fifth of that in the animals fed a sesamin-free diet. It was suggested that the dietary sesamin-dependent decrease in lipogenic enzyme gene expression is due to the suppression of the gene expression of SREBP-1 as well as the proteolysis of the membrane-bound precursor form of this transcriptional factor to generate the mature form.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center