Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2001;107(1):99-108.

Melatonin generates an outward potassium current in rat suprachiasmatic nucleus neurones in vitro independent of their circadian rhythm.

Author information

1
Netherlands Institute for Brain Research, Amsterdam, The Netherlands. mvandentop@bio.warwick.uk

Abstract

The present study investigated the membrane mechanisms underlying the inhibitory influence of melatonin on suprachiasmatic nucleus (SCN) neurones in a hypothalamic slice preparation. Perforated-patch recordings were performed to prevent the rapid rundown of spontaneous firing rate as observed during whole cell recordings and to preserve circadian rhythmicity in SCN neurones. In current-clamp mode melatonin (1 microM or 1 nM) application, in the presence of agents that block action potential generation and fast synaptic transmission, resulted in a membrane hyperpolarisation accompanied with a decrease in input resistance in the majority of SCN neurones (71-86%). The amplitude of the hyperpolarisation was not found to be significantly different between circadian time 5-12 and 14-21. In voltage-clamp mode melatonin (1 microM or 1 nM) induced an outward current accompanied with an increase in membrane conductance. The current was found to be mainly potassium driven with voltage kinetics resembling those of an open rectifying potassium conductance. Investigations into the signal transduction mechanism revealed melatonin-induced inhibition of SCN neurones to be sensitive to pertussis toxin but independent of intracellular cAMP levels and phospholipase C activity. The present study shows that melatonin, at night-time physiological concentrations, reduces the neuronal excitability of the majority of SCN neurones independent of the time of application in the circadian cycle. Thus in vivo melatonin may be important for circadian time-keeping by amplifying the circadian rhythm in SCN neurones, by lowering their sensitivity to phase-shifting stimuli occurring at night.

PMID:
11744250
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center