Send to

Choose Destination
J Med Chem. 2001 Dec 20;44(26):4696-703.

Design, synthesis, and pharmacological evaluation of thapsigargin analogues for targeting apoptosis to prostatic cancer cells.

Author information

Department of Medicinal Chemistry, The Royal Danish School of Pharmacy, 2 Universitetsparken, DK-2100 Copenhagen, Denmark.


A series of thapsigargin (TG) analogues, containing an amino acid applicable for conjugation to a peptide specifically cleaved by prostate-specific antigen (PSA), has been prepared to develop the drug-moiety of prodrugs for treatment of prostatic cancer. The analogues were synthesized by converting TG into O-8-debutanoylthapsigargin (DBTG) and esterifying O-8 of DBTG with various amino acid linkers. The compounds were evaluated for their ability to elevate the cytosolic Ca(2+) concentration ([Ca(2+)](i)) in TSU-Pr1 cells, their ability to inhibit the rabbit skeletal muscle SERCA pump, and their ability to induce apoptosis in TSU-Pr1 human prostatic cancer cells. The activity of analogues, in which DBTG were esterified with omega-amino acids [HOOC(CH(2))(n)()NH(2), n = 5-7, 10, 11], increased with the linker length. Analogues with 3-[4-(L-leucinoylamino)phenyl]propanoyl, 6-(L-leucinoylamino)hexanoyl, and 12-(L-serinoylamino)dodecanoyl were considerably less active than TG, and analogues with 12-(L-alaninoylamino)dodecanoyl and 12-(L-phenylalaninoylamino)dodecanoyl were almost as active as TG. The 12-(L-leucinoylamino)dodecanoyl gave an analogue equipotent with TG, making this compound promising as the drug-moiety of a PSA sensitive prodrug of TG.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center