Format

Send to

Choose Destination
See comment in PubMed Commons below
J Exp Bot. 2002 Jan;53(366):73-82.

The apoplastic pH of the substomatal cavity of Vicia faba leaves and its regulation responding to different stress factors.

Author information

  • 1Botanisches Institut I, Justus-Liebig-Universit├Ąt Giessen, Senckenbergstrasse 17, D-35390 Giessen, Germany. Hubert.Felle@bio.uni-geissen.de

Abstract

The apoplastic pH of the substomatal cavity is an essential determinant of stomatal movement. In detached leaves of Vicia faba substomatal apoplastic pH and its dependence on external (stress) factors was investigated using a non-invasive approach: pH-microsensors were inserted into open stomata, and upon contact with the apoplastic fluid, pH was measured continuously, as apoplastic pH was challenged by changed conditions of light, atmosphere (NH(3), CO(2)), and xylem sap (abscisic acid, cyanide, fusicoccin, pH, inorganic salts). Apoplastic pH proved extremely sensitive to infiltration and local flooding, which rapidly increased the apoplastic pH by more than 1.5 pH units. Recovery from infiltration took several hours, during which light effects on the apoplastic pH were strongly impeded. This indicates that pH tests carried out under such conditions may not be representative of the undisturbed leaf. NH(3), flushed across the stomata, yielded a rapid apoplastic alkalinization from which an apoplastic buffer capacity of 2-3 mM per pH unit was calculated. Fusicoccin, fed into the xylem sap acidified the apoplast, whereas cyanide alkalized it, thus underscoring the importance of the plasma membrane H(+) pump for apoplastic pH regulation. To address the question to what extent pH was a drought signal, the effect of iso-osmotic pH changes, fed into the xylem through the petiole were tested. It is demonstrated that the apoplastic response remained below 0.1 pH per pH unit imposed, regardless of the buffer capacity. An increase in the osmolarity of the bath solution (harbouring the cut petiole) using KCl, NaCl, CaCl(2) or sorbitol alkalized the substomatal apoplast. It is suggested that pH may only act as drought signal when accompanied by elevated osmolarity.

PMID:
11741043
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center