Format

Send to

Choose Destination
Arch Microbiol. 2001 Dec;176(6):452-8. Epub 2001 Sep 27.

Nonribosomal peptide synthetase genes occur in most cyanobacterial genera as evidenced by their distribution in axenic strains of the PCC.

Author information

1
Institut für Biologie, Humboldt-Universität, Chausseestrasse 117, 10115 Berlin, Germany.

Abstract

Previous studies largely carried out with environmental samples or axenic and non-axenic cultures suggested that cyanobacteria may be a rich source of hitherto unexplored bioactive compounds. This has been confirmed in the present study by a screening of 146 axenic strains from the Pasteur Culture Collection (PCC) of cyanobacteria. Use of degenerate PCR primers, designed on the basis of conserved sequence motifs in the aminoacyl-adenylation domain of peptide synthetases, revealed the presence of the corresponding genes in the majority (75.3%) of the strains examined. Among unicellular cyanobacteria, only Chamaesiphon sp. strain PCC 6605, two strains of Gloeocapsa and most Microcystis isolates (22 out of 24) contained these genes; no amplicons were detected for any members of the genera Cyanothece, Gloeobacter and Gloeothece and the genetically diverse representatives of Synechococcus and Synechocystis. By contrast, eight out of ten pleurocapsalean members, 16 out of 25 oscillatorian strains, and all but two of the 63 filamentous heterocystous cyanobacteria tested gave positive amplification results. This information will be highly valuable for further exploring the corresponding cyanobacterial peptides and for elucidating the bioactivity of such non-ribosomally synthesized molecules.

PMID:
11734889
DOI:
10.1007/s002030100349
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center