Send to

Choose Destination
Matrix Biol. 2001 Dec;20(8):577-87.

Neutrophil collagenase (MMP-8) is expressed during early development in neural crest cells as well as in adult melanoma cells.

Author information

Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78284, USA.


Matrix metalloproteinase-8 (MMP-8) is a neutral metalloproteinase of the fibrillar collagenase family that also includes MMP-1 and MMP-13. In contrast to the other collagenases, MMP-8 has a very limited tissue distribution, thought to be restricted to neutrophils and chondrocytes. In a previous study, we observed MMP-8 expression in human melanoma cells. This observation led us to assess in more detail the expression of MMP-8 in normal and malignant melanocytic cells. We found that MMP-8 was expressed by 11 out of 12 human melanoma cell lines tested and all 10 primary melanomas we examined, but was not expressed by four primary neonatal melanocyte strains. Since melanocytes arise from highly motile neural crest cells, we examined the hypothesis that MMP-8 might be expressed by neural crest cells. RT-PCR analysis of post-implantation mouse embryos indicated the presence of MMP-8 transcripts at E9.5. In situ hybridization and immunohistochemistry of mouse embryos between E9.5-E14.5 demonstrated MMP-8 expression in the surface ectoderm, neural crest cells and chondrocytes. MMP-8 was also detected in neural crest cell migration located in the circumference of the neural tube, branchial arches and the notochord. In addition, MMP-8 expression was observed between the somites, in circumscriptive areas of the developing brain, heart, and eye, and in the interdigital zones of the limbs. In summary, we found MMP-8 to be the first fibrillar collagenase expressed during development. In contrast to its restricted tissue expression post-partum, MMP-8 was present in multiple embryonic tissues, including neural crest cells. The production of MMP-8 by migrating neural crest cells may contribute to their ability to degrade fibrillar collagen matrices while in transit.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center