Send to

Choose Destination
Biochemistry. 2001 Dec 4;40(48):14413-21.

Intramolecular interactions in chemically modified Escherichia coli thioredoxin monitored by hydrogen/deuterium exchange and electrospray ionization mass spectrometry.

Author information

Department of Chemistry and Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA.


Site specific amide hydrogen/deuterium content of oxidized and reduced Escherichia colithioredoxin, and alkylated derivatives, Cys-32-ethylglutathionylated and Cys-32-ethylcysteinylated thioredoxins are measured, after exposure for 20 s to D(2)O/phosphate buffer (pH 5.7), by electrospray mass spectrometry. The degree of deuteration of Oxi-TRX and Red-TRX correlated with the rates of H/D exchange measured previously by NMR. The ethylcysteinyl modification was shown to minimally perturb the active site of the reduced protein, but showed more global effects on structures of alpha-helices and beta-strands distant from the site of modification. In contrast, the larger ethylglutathionyl group had little effect on the protein's overall conformation, but significantly affected the structure of loops close to the active site. A molecular model of GS-ethyl-TRX derived from molecular simulation allowed the H/D exchange results to be interpreted in terms of specific interactions between the alkyl chain and the protein surface. The specific conformation of the ethylglutathione modification was predicted to be fixed by salt bridges between the carboxylates of the gamma-Glu and Gly of glutathione and the guanidinium of Arg-73 and epsilon-amino group of Lys-90 of the protein. Specific hydrogen bonding interactions between the glutathione carbonyl oxygens and the amide protons of thioredoxin residues Ile-75 and Ala-93 were predicted. The H/D exchange studies showed low levels of deuterium incorporation at backbone nitrogens of these residues. The data also provided evidence for an unusual amide proton-amide nitrogen hydrogen bond within the ethylglutathionylated chain. These same sets of electrostatic and hydrogen bonding interactions were not predicted or observed for the smaller alkyl modification in Cys-ethyl-TRX.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center