Send to

Choose Destination
J Mol Biol. 2001 Nov 16;314(1):113-27.

Structure and dynamics of MarA-DNA complexes: an NMR investigation.

Author information

Laboratory of Chemical Physics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0560, USA.


An unanswered question regarding gene regulation is how certain proteins are capable of binding to DNA with high affinity at specific but highly degenerate consensus sequences. We have investigated the interactions between the Escherichia coli transcription factor, MarA, and its diverse binding sites using NMR techniques. Complete resonance assignments for the backbone of the MarA protein complexed with DNA oligomers corresponding to its binding sites at the mar, fumC, micF and the fpr promoters were obtained. Secondary structure analysis based on chemical shifts reveals that regions identified as helical in the X-ray structure of the MarA-mar complex are present in the solution structure, although some of the helices are less well defined. The chemical shift differences between the four complexes confirm that helix 3 and helix 6 constitute the major DNA-binding elements. However, in striking contrast with the X-ray data: (i) the protein appears to be present in two or more conformations in each of the complexes; (ii) no slowly exchanging N(zeta)H(2) protons (indicative of hydrogen bonded groups) were observed by NMR for the two arginine residues proposed to form crucial hydrogen bonds in the X-ray structure; and (iii) regions at the N terminus, not observed in the X-ray structure, may be involved in DNA-binding. Taken together, the NMR results indicate that MarA in its complexes with DNA target sites is in a highly dynamic state, allowing for small but significant rearrangements of the side-chains and/or backbone to bind to the different DNA sequences.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center