Format

Send to

Choose Destination
Mol Microbiol. 2001 Nov;42(3):603-17.

Icm/dot-dependent upregulation of phagocytosis by Legionella pneumophila.

Author information

1
Department of Microbiology, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, NY 10032, USA.

Abstract

Legionella pneumophila is the causative agent of Legionnaires' disease, a severe pneumonia. Dependent on the icm/dot loci, L. pneumophila survives and replicates in macrophages and amoebae within a specialized phagosome that does not fuse with lysosomes. Here, we report that phagocytosis of wild-type L. pneumophila is more efficient than uptake of icm/dot mutants. Compared with the wild-type strain JR32, about 10 times fewer icm/dot mutant bacteria were recovered from HL-60 macrophages in a gentamicin protection assay. The defect in phagocytosis of the mutants could be complemented by supplying the corresponding genes on a plasmid. Using fluorescence microscopy and green fluorescent protein (GFP)-expressing strains, 10-20 times fewer icm/dot mutant bacteria were found to be internalized by HL-60 cells and human monocyte-derived macrophages (HMMPhi). Compared with icm/dot mutants, wild-type L. pneumophila infected two to three times more macrophages and yielded a population of highly infected host cells (15-70 bacteria per macrophage) that was not observed with icm/dot mutant strains. Wild-type and icmT mutant bacteria were found to adhere similarly and compete for binding to HMMPhi. In addition, wild-type L. pneumophila was also phagocytosed more efficiently by Acanthamoeba castellanii, indicating that the process is independent of adherence receptor(s). Wild-type L. pneumophila enhanced phagocytosis of an icmT mutant strain in a synchronous co-infection, suggesting that increased phagocytosis results from (a) secreted effector(s) acting in trans.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center