Format

Send to

Choose Destination
Biophys J. 2001 Dec;81(6):3377-86.

Hydration and molecular motions in synthetic phytanyl-chained glycolipid vesicle membranes.

Author information

1
Nanotechnology Research Institute, Tsukuba, Ibaraki, Japan. t-baba@aist.go.jp

Abstract

Proton permeation rates across membranes of a synthetic branch-chained glycolipid, 1,3-di-O-phytanyl-2-O-(beta-D-maltotriosyl)glycerol (Mal3(Phyt)2) as well as a branch-chained phospholipid, diphytanoylphosphatidylcholine (DPhPC) were lower than those of straight-chained lipids such as egg yolk phosphatidylcholine (EPC) by a factor of approximately 4 at pH 7.0 and 25 degrees C. To examine whether degrees of water penetration and molecular motions in Mal3(Phyt)2 membranes can account for the lower permeability, nanosecond time-resolved fluorescence spectroscopy was applied to various membranes of branch-chained lipids (Mal3(Phyt)2, DPhPC, and a tetraether lipid from an extremely thermoacidophilic archaeon Thermoplasma acidophilum), as well as straight-chained lipids (EPC, 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and digalactosyldiacylglycerol (DGDG)) using several fluorescent lipids. Degrees of hydration of glycolipids, Mal3(Phyt)2, and DGDG were lower than those of phospholipids, EPC, POPC, and DPhPC at the membrane-water interfaces. DPhPC showed the highest hydration among the lipids examined. Meanwhile, rotational and lateral diffusive motions of the fluorescent phospholipid in branch-chained lipid membranes were more restricted than those in straight-chained ones. The results suggest that the restricted motion of chain segments rather than the lower hydration accounts for the lower proton permeability of branch-chained lipid membranes.

PMID:
11721000
PMCID:
PMC1301794
DOI:
10.1016/S0006-3495(01)75970-X
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center