Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2002 Feb 15;277(7):5126-33. Epub 2001 Nov 19.

Changes in phospholipid extractability and composition accompany mineralization of chicken growth plate cartilage matrix vesicles.

Author information

1
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.

Abstract

Matrix vesicles are lipid bilayer-enclosed structures that initiate extracellular mineral formation. Little attention has been given to how newly formed mineral interacts with the lipid constituents and then emerges from the lumen. To explore whether specific lipids bind to the incipient mineral and if breakdown of the membrane is involved, we analyzed changes in lipid composition and extractability during vesicle-induced calcification. Isolated matrix vesicles were incubated in synthetic cartilage lymph to induce mineral formation. At various times, samples of the lipids were taken for analysis, extracted both before and after demineralization to remove deposited mineral. Phosphatidylserine and phosphatidylinositol both rapidly disappeared from extracts made before decalcification, indicating rapid degradation. However, extracts made after demineralization revealed that phosphatidylserine had become complexed with newly forming mineral. Concomitantly, its levels actually increased, apparently by base-exchange with phosphatidylethanolamine. Though partially complexed with the mineral, phosphatidylinositol was nevertheless rapidly broken down. Sphingomyelin and phosphatidylethanolamine also underwent rapid breakdown, but phosphatidylcholine was degraded more slowly, all accompanied by a buildup of free fatty acids. The data indicate that phosphatidylserine forms complexes that accompany mineral formation, while degradation of other membrane phospholipids apparently enables egress of crystalline mineral from the vesicle lumen.

PMID:
11714705
DOI:
10.1074/jbc.M107899200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center